DESIGNER GENES SAMPLE TOURNAMENT (05)

	STUDENT NAMES: (PLEASE PRINT) 1 2			
Par	t A.			
	(In flowers – Gene "R" produces red flowers and gene "r" produces white flowers) Note: Show the cross using a Punnett Square on the back of the page.			
1	What is the genotype ratio of a cross Rr X Rr?			
2	What would be the phenotype ratio of the cross in # 1?			
3	What would be the phenotype ratio if the trait has incomplete dominance?			
	Colorblindness is a sex-linked trait. A woman, whose mother is colorblind and whose father has normal vision marries a normal visioned man. (Note: Show the cross using Punnett Squares on the back of the page.)			
4	What is her genotype ? What is her phenotype ?			
5	What is the chance that her first offspring will be colorblind if it is a male? If it is a female?			
Par	t B:			
gen	In mice, the gene for color coat (C) is dominant to the gene for albino (c), and e for straight whiskers (S) is dominant to the gene for bent whiskers (s). Two heterozygous dominant e are crossed CcSs x CcSs. (Note: Show the cross using a Punnett Square on the back of the page.)			
6	What is the phenotype ratio for this cross?			
7	What is the genotype ratio for this cross?			
8	What proportion of the offspring would you expect to be albino ?			
9	What portion of the offspring would you expect to have bent whiskers?			
10	What would be the expected ratio of offspring phenotypes with both recessive alleles expressed?			

Part C Examine the pedigree and answer the following questions.

What is the relationship of the following individuals?

- 11. _____# 1 and # 4
- 12. _____ # 11 and # 12

Give the **possible genotypes** and then the **blood type** for the following individuals.

- 13. ____Individual # 2
- 14._____ Individual # 3
- 15. Individual # 8

Part D. Examine the provided karyotypes and answer the following questions.

Individual A Individual B

- 16. _____ What is the sex of individual A?
- 17. _____ What is the sex of individual B?
- 18. What defect does individual A have?
- 19. _____ What defect does individual B have?
- 20. How many chromosomes are in a normal somatic (body) cell of individual A?

For question 21, Your are given the following gene to gene distances B-C 3 map units D-C 7 map units A-B 8 map units D-A 12 map units _____ Draw a complete map that includes all genes and the distances between the genes. For Question 22, consider the cross: AaBbCc x AaBbCc 22._____ How many different kinds of gametes can each parent produce? Show the combinations for each parent below: For question 23, Albinism is an absence of pigment. Two normal adults marry and have a child that is an albino. 23._____ Is albinism dominant or recessive? What is the probability that the next child will be an albino? For question 24, in humans, 1 in 10,000 females have a rare sex-linked recessive genetic disorder. 24 _____What is the frequency of the affected males? For question 25, a small fragment of DNA has been collected at a crime scene. What is the name of the procedure in DNA analysis which allow one to make many copies of a piece of DNA?

Part E. Examine the data provided and answer the following questions.

Part F:

Examine the information concerning the paternal case. Use the evidence from the blood samples and DNA analysis to answer the questions.

PARENTAL CASE				
Blood Analysis		<u>DNA ANALYSIS KEY</u>		
Mother	I ^A i	#1-Sample from mother's blood		
Child	іi	#2-Sample from child's blood		
Possible Father #1	I^{A} I^{B}	#3-Sample from possible father #1		
Possible Father #2	I ^a i	#4-Sample from possible father #2		
Possible Father #3	I ^B i	#5-Sample from possible father #3		

DNA ANALYSIS

3

30. _____ Based upon all of the evidence, which of the possible fathers is most likely the

1

father of the child?

father of this child?

2

	·
	
	
	 , ,
	
	
	
26	What is the blood type of the child? What is its genotype?
27	What is the blood type of the mother? What is her genotype?
28	What are the blood types of the possible fathers?
29	Based upon the blood types, which of the possible fathers could be the biological

5

DESIGNER GENES -SAMPLE TOURNAMENT (05) - Answer Key

- 1. 1:2:1
- 2. 3:1
- 3. 1:2:1
- 4. $X^C X^c$
- 5. 50% 0%
- 6. 9:3:3:1
- 7. 1:2:1:2:4:2:1:2:1
- 8. 4/16
- 9. 4/16
- 10. 1/16
- 11. mother and daughter
- 12. wife and husband
- 13. I^Bi type B
- 14. I^Bi type B
- 15. I^AI^B type AB
- 16. female
- 17. female
- 18. Monosomy 18
- 19. Trisomy 21 (Down's Syndrome)
- 20. 45 chromosomes
- 21. D 4 B 3 C 5 A
- 22. six ABC, ABc, Abc, aBC, aBc, abc
- 23. recessive 1/4 or 25%
- **24.** 1/100 ($1/100 \times 1/100 = 1/10,000$)
- 25. PCR Polymerase Chain Reaction
- 26. type O ii
- 27. type A $I^{A}i$
- 28. types AB, A, B
- 29. father's 2 & 3
- **30.** father 2