2013 Regional Competition March 3rd, 2013 Illinois Math Science Academy

Technical Problem Solving

Team Name		V or JV
	Team #	
Participant's Names		
	Topics covered	
	Closed tube harmonics	
	Open Tube Harmonics	
	Catalase reaction	

Required materials -

- Rubber stopper per group
- Deep sink or large graduated cylinder
- 480 Hz Tuning fork per group or key must be adjusted.
- 2" diameter PVC pipe of ~15 inches per group
- Meterstick per group
- 1 thermometer total.

Part One Closed tube harmonics

- 1. The speed of sound is 332 m/sec at 273 K and increases 0.6 m/s for each degree above zero celsius. What should be the speed of sound in this room?
- 2. What is the frequency of the tuning fork provided to you?
- 3. Strike the tuning fork on the rubber stopper to produce a frequency. Draw a picture indicating which way the tines vibrate.
- 4. Insert the PVC pipe in water and use the tuning fork (with rubber stopper) to find the **loudest** sound you can make. What height of PVC makes that sound?
- 5. Determine the wavelength using the height found in number four.
- 6. Assuming that your tuning fork was exactly at the top of the pipe, calculate the speed of sound. Show work.
- 7. Calculate your % error. Show work.
- 8. What is the place in a standing wave of maximum displacement?
- 9. What is the phenomenon called where waves reinforce each other?
- 10. What is the place in a standing wave of zero displacement?
- 11. What part of a sound is the amplitude equivalent to?
- 12. What part of a sound is the frequency equivalent to?
- 13. At what fractions of a wavelength do open ended pipes resonate?

Catalase reaction

The following data were obtained by decomposing hydrogen peroxide with catalase:

	0.20 M H ₂ O ₂	0.30 M H ₂ O ₂	0.40 M H ₂ O ₂
Time (sec)	Pressure (atm)	Pressure (atm)	Pressure (atm)
0	0	0	0
20	0.30	0.45	0.60
40	0.60	0.90	1.20
60	0.90	1.34	1.34
80	1.20	1.34	1.34
100	1.34	1.34	1.34
120	1.34	1.34	1.34

- 1. What is the unit (unabbreviated) for pressure? [1]
- 2. Write the balanced reaction that occurs for the decomposition of H_2O_2 with catalase. Include catalase. [5]
- 3. What substance in your reaction produces the pressure recorded? [1]
- 4. Using the data table above, explain why H_2O_2 is first order. [2]
- 5. Use the data table given to construct an appropriate graph. Include ALL parts of a quality graph. [15]
- 6. How would your GRAPH above change if H₂O₂ was 2nd order? [2]
- 7. What concentration had the fastest initial rate? Explain [3]
- 8. What concentration had the fastest final rate? Explain [3]
- 9. Draw a prediction of the line that would form for 0.50M H₂O₂. [2]
- 10. What is the unit for rate in the above graph? [1]
- 11. How would the graph change if a substantial amount of H₂O₂ decomposed before measurements were taken? [3]
- 12. How would the graph change if the student adding the catalase could not immediately attach the pressure sensing cap? [3]
- 13. What substance(s) in the above reaction is an enzyme? [2]
- 14. What substance(s) in the above reaction is a substrate? [2]

Another experiment was performed where the temperature was measured at 10°C, 20°C, and 150°C.

- 15. Which temperature would you expect to have the fastest initial rate? Explain. [4]
- 16. Which temperature would you expect to have no rate? Explain. [3]
- 17. Catalase was taken from pig liver. What pH would you expect to have the fastest rate? Explain. [3]
- 18. If a cell did not have any catalase, does the reaction proceed faster, slower, or not at all? [1]

Two different sources of catalase were tested. Source A came from a hot spring of pure water. Source B came from a cold water fish that lives in an acidic lake.

19. How would you expect the conditions of optimum functionality to differ between Source A and Source B. Explain. [4]

KEYKEYKEY

Answer Key Technical Problem Solving Regional 83pts. High score wins. First lab 1-13 is tie breaker.

- 1. 22° is room temp. so (0.6*22)+ 332=345 m/sec. +1 # +1 unit [2]
- 2. 480 Hz is what we used and it is labeled. +1# +1 unit [2]

- 3. (a) (b) [1]
- 4. 15-18 cm or so. +2 within tolerance +1unit [3]
- 5. .17*4=.68 m or 68cm [2]
- 6. $c=f\lambda$ 480*.68=326 m/sec +1 m not cm, +2 answer, +1 unit[4]
- 7. (345-326)/345=5.5% Note: answer to #1 and #6used. [2] 1pt for yield instead

[1]

- 8. Antinodes
- 9. Constructive interference [1]
- 10. Node [1]
- 11. Intensity of sound [1]
- 12. Pitch [1]
- 13. ¼, ¾, **multiples** of ½ after ¼ [2]

Catalase Reaction

- 1. Atmosphere [1]
- 2. 2H2O2 Catalase O2 + 2H2O +1react+2prod, +1cat,+1bal [5]
- 3. Oxygen [1]
- 4. As the concentration of H2O2 doubles, the time cuts in half [2]
- 5.
- +1 Title
- +2 for Axis labeled Time and Pressure
- +2 for units of sec and atm
- +2 for appropriate scale for y axis
- +2 for appropriate scale for x axis
- +3 for plot (increasing taper at top)
- +3 for using at least half of the graph paper, but not going "off" the paper.

6.	The slope of the line would be steeper at first.	[2]
7.	0.40 M because it has the steepest slope. +1 answer+2reason	[3]
8.	All the same. The slope was the same.	[3]
9.	Added line with steeper slope +1 and same plateau+1	[2]
10.	Atm/sec	[2]
11.	The slope would be less and the plateau would be lower+1each +3 both	[3]
12.	Plateau would be lower and slow faster (See above)	[3]
13.	Catalase only	[2]
14.	H2O2 only	[2]
15.	20 C. It is warm, but not so hot it destroys the enzyme	[2]
16.	150 C because it would denature the enzyme so rx'n so slow no rate	[4]
17.	pH of 6-8 b/c that is what living things basically have.	[3]
18.	slower.	[1]
19.	A—higher temp and neutral pH. B lower temp and lower pH	[4]