
Carrot’s Game On Guide 
 

Introduction 

Hello! I am a rising senior at Mason High School and this is my guide for the Scioly event, Game 
On. Throughout the 2017-18 season, I have achieved a solid understanding of the event and 
hope to pass on my knowledge to others, as it will be leaving from Division C for the 2018-19 
season. 
 
The objective of the Scioly event, Game On, is to create a game in 50 minutes based off of a 
scientific theme, as well as a game type (2017-18) using the coding program, Scratch. This 
guide is meant for those who understand the basics of Scratch and who have read over the 
rules and rubric for the event. 
 
In this guide, I will often be referring to the User controlled sprite as UI and the Autonomous 
sprite (the ones that the player doesn’t control) as AI. I will also be referring to the impression of 
the game as some sort of value, increasing with unique items within the game. This is due to the 
rubric having two extremely vague sections, each worth 4 points: “Overall impression of the 
game” and “Originality of the game.” 
 

The Basics of Game On 
When first experiencing Game On in any setting, one might wonder how two people can 
simultaneously work on the game, as there is only one computer, one mouse(usually), and one 
keyboard. Well, here’s what worked for me and my partner: 
 
The Coder:  

The coder is the one responsible for all the coding for the competition. They are the one 
dragging and dropping blocks within the program and should try to always be doing something 
at any given time during a competition. Game On is a battle with time; the more effectively you 
work, the greater success you will achieve. 
 
The Designer: 

The designer is the one responsible for the idea of the game as well as the scientific 
topics. Of course, the coder is allowed to also help with this process but it is not recommended 
as it would most likely lower the efficiency of both members. The designer should have a solid 
background in all fields of science, especially biology, in order to incorporate scientific topics 
into the game. 
 
Competition - Quick Summary: 

 



Immediately, the coder should start on the setup of the game (later to be explained). At 
the same time, the designer should begin brainstorming the game and telling the coder what 
type of movement for the UI and the AI sprites (this will be covered over more later). This 
process is basically continued for the next few minutes. While the coder is coding the game, the 
designer will also be writing the instructions and drawing sprites on the plan paper. 

After this, either player would draw the sprites, background, and other visual aspects in 
the game. The designer would then type the instructions and set up the text for the win/loss 
screens as well as the start screen and game title. 

Finally, both participants would work together to decide on background music, in game 
sounds, as well as type up the comments for the code. 
 

The Setup 

This section will cover how to carry out ‘The Setup’ for a Game On game. For almost every 
single game you make, the coder would have to do this as soon as the timer begins for the 
event. This section should be practiced by the coder to allow for them to carry out this section 
as quickly as possible. 
 
Step 1: Create the Backdrops 
 
By this I don’t mean draw out all the backdrops. I just mean have each of the 5 backdrops 
created. Blank backdrops are completely fine for now. 
 
Start - This is the screen that the game begins on when you press the green flag. 
Instructions - This is the screen that appears once you click the instructions button. It will 
contain your instructions for the game. 
Play - This is where you actually will play the game. It will appear once you hit the play button. 
Win - This is the screen that appears if you win the game. 
Lose - This is the screen that appears if you lose. 
 
(Note: Usually if it is a two player game the Win/Loss screens would be replaced by Player 1 
Wins / Player 2 Wins screens.) 
(Another Note: I usually would color the Win backdrop green and the Lose backdrop red as 
soon as I make them.) 
(Another Another Note: If it is a Maze game, draw out the maze ASAP. Will later be explained in 
game types.) 
 
I’ve seen some teams not include a start screen and just have the game start on the instructions 
screen, therefore only have to code for the play button and not an instructions button. However, 
the Game On Rubric states that “buttons are used to access other screens/options.” You may 
be able to get away with this at invitationals but I would highly recommend including the Start 
screen. It also helps build up the grader’s impression over your game. 

 



 
Step 2: Code the Buttons 
 
There are two buttons (usually) that the coder would code for in Game On during the setup: the 
Play button and the Instructions button. 
 
Throughout various teams, some prefer to do things a little differently for the buttons. 

● Some people draw their own buttons, and often times it is just a rectangle. I would highly 
advise NOT to do this. It is a complete waste of time and does not add much impression 
to your game. I always just use the “Button3” sprite from the scratch library (the grey 
colored one) and add text onto the sprite, either “Play” or “Instructions.” I guess if you 
had extra time at the end, you could redraw your buttons but if so, try to design them so 
that it fits the rest of your game. 

● Some people use the term “Help” over “Instructions.” Yeah, go ahead if you want. There 
is nothing wrong with either way but be consistent throughout your game. Even the 
rubric knows it as “Help/Instructions.” The only downside of “Instructions” is that 
“Instructions” is a wee bit longer but with decent typing speed this shouldn’t really add 
any time into making your game.  

● Some people (probably only my partner and I) make the button get bigger if you are 
hovering over it. This is a personal preference that I have developed over time which 
takes like 10 seconds to code but adds 2 forever loops into your program. I do this 
because it kind of looks cool and would stand out from other teams’ buttons even though 
it doesn’t add any extra points, maybe adds a bit of impression. 
(Note: I will be using this in the button code picture.) 

● Some people have sprite changes on their buttons. Why? 
 
I will now put in an image of the code I usually have for both buttons during the setup. 
(Note: Game Over code can be done either now or later, it really doesn’t matter) 
 
Play Button: 

  

 



Instructions Button:  

 
 
 

Types of UI Movement 

This section will cover the main types of UI movements that are commonly used in Scratch 
games. 
 
(Note: WASD can be use d in replace of Arrow Keys based off 
of personal preference and if the mouse will be used in the game.) 
(Another Note: The numerical values I use for incrementing and 
initializing was just found by personal preference. Do whatever 
feels smooth for you.) 
 
 
 
Arrow Keys - No Velocity: 
This is probably the most basic movement a user controlled sprite 
could have. Up arrow moves up, down arrow moves down, right 
arrow moves right, and left arrow moves left. The use of the speed 
variable is to later on make it simple to add in a speed change for 
the user controlled sprite, just by changing the speed variable. 
 
 
 
Arrow Keys - Velocity: 
This is an extension of the previous type of movement. It adds in 
both acceleration and friction to the game. The change in x velocity 
and y velocity variables are what allow the sprite accelerate and 
decelerate. The use of the 2 set blocks at the end allows for the 
deceleration of the sprite. 

 



 
Car Controls - No Velocity: 
This control type, or car controls, is controlled by pressing up 
arrow to move forward, down arrow to move backwards, right 
arrow to turn right, and left arrow to turn left. It is often used when 
the sprite you are making is from a top-down perspective. 
 
 
 
 
 
 
 
 
 
Car Controls - Velocity:  
This is an extension of the previous type of movement. It adds in 
both acceleration and friction to the game. The first first else is 
used to decelerate. The if-else speed > 7 test is used to make 7 
the maximum speed that the sprite can move at, capping the 
speed. 
 
(Note: This example of car velocity does not involve going 
backwards. It can be easily implemented if needed, though let's 
be honest, how often do people go backwards?) 
 
 
 
 
 
 
 
 
Most of the times my partner and I would mainly use either Car Controls - Velocity or Arrow 
Keys - Velocity for our UI movement type. This is to allow for an overall smoother feel as well as 
sometimes being counted for points in complex movement of the UI. There are, however, 
exceptions to this. For example, often times in a maze game we would choose to use Arrow 
Keys - No Velocity as all the other types of movement in a maze feel really messed up as you 
would just keep crashing into walls over and over again and it would be hard to control. 
 
In a note found at the beginning of this section, I said that WASD could replace the arrow keys, 
as they are basically the same exact thing. I preferred WASD as they felt more natural to me. 

 



This also allows for using the mouse for things such as shooting. If you use arrow keys, using 
the mouse at the same time would feel rather awkward.  
For 2 player games, I would usually make one of the user sprites move with the WASD keys 
while the other user sprite move with the arrow keys. You can choose whether you want car 
controls or not with one exception: 2 player racing games MUST use car controls. This is 
because you would usually take the direction the UI is facing and just have the bullet go in the 
same direction, instead of shooting using the mouse since there is not a mouse for both people. 
 

Types of AI Movement 

This section will cover the simplest types of AI movements that are commonly used in Scratch 
games. It will also cover a few very conditional AIs that are rarely used but could save the day 
when given a strange game type combination. The movement type(s) used should be decided 
by the Designer. Multiple movement types can be used within one game assuming that you 
have multiple AIs. 
 
None of these AI Movements types are meant for competition use. They are meant to be 
improved and altered depending on the scientific theme given. If you use any of these types of 
AI movement, you will lose many points as none of these are very complex. 
 
Creating your own unique autonomous sprites is a big part in preparing for competitions. The 
more you know the better! These are just a few extremely simple examples with one very 
situational one. 
 
Follow - Direct: 
This is very easy to code. It is a forever loop with a point towards UI and move. It is the simplest 
form of chasing the user that you could possibly get. 
 
Follow - Glide: 
This is very similar to the Follow - Direct code except you would have a glide to x of UI, y of UI 
instead of the point and move. It is another simple form of chasing. 
 
Spawn: 
This code is extremely useful. I would say around 75% of the games I made this Scioly season 
involved a variation of this code. It just moves the sprite to a random location.

 
● The reason why the values 220 and 160 are used is because the max range of the x is 

up to 240 and the max range of the y is 180. Using 220 and 160, you can ensure that the 
sprite will always be able to be seen and be on the screen. 

If you want the sprite to not touch a certain sprite/color, then do the following: 

 



 
 
Bullet: 
This is the code for a bullet in case you want to include shooting. There are two main forms of 
shooting: shoot towards mouse or shoot in the same direction that the UI is facing. In the 
following code I will be using shoot towards mouse. 
 
Also, the way I do shooting is I have 1 bullet on the screen at the same time. If you want to, you 
can mess with clone shooting but I have very bad past experiences with clones and almost 
always avoid using clones during competitions. 
 

 
 
You can also add acceleration and deceleration to the bullet for more complex movement and a 
higher impression which I usually do when I use a bullet. To do that, in the repeat until loop you 
would have to increment a speed variable and then move by speed. You would also need to 
initially set the speed to 0 a value like that. 
 
Maze Racing: 
Ah, this sprite is very special to me as I came up with it on the day of nationals during the 
impound time after realizing that I was screwed if I got this deadly game type combination: Maze 
and Racing. This sprite is kind of like a pacman ghost sprite but it has more random motion. To 
make this sprite successfully, you have to draw the maze in a very specific way. This will later 
be elaborated on later. 
 

 



(It seems that I have lost a code example for this. It is basically a sprite that turns either left or 
right every time it hits a wall.) 
 

Game Types 

This section will cover all six of the game types found in the 2017-18 Game On rules. 
 
Collection – the user controlled sprite is involved in the collecting of objects to complete 
the objective of the game. 
 
Nearly every game over this season that I made had some sort of collection within it. Collection 
is a very simple thing that you need to collect objects in order to beat the game. To do this, just 
use a collision test with an AI and the spawn code and poof, you got yourself a collection game. 
Of course, it still needs to be made more complex but that is the basis of a collection game. 
 
Maze – the user controlled sprite must navigate through a series of static obstacles, 
borders, boundaries or lines to complete the objective of the game  
 
Yeah, a maze game is just a game where you are in a maze. Try not to stretch this, such as by 
just having a few obstacles, just in case a grader tiers you for the game not being a maze. 
Yeah, just make a maze. 
 
Oh boy, it’s already time for me to reveal the easiest way to make a maze without sheer 
memorization and line drawing. My hidden OP throughout the season… 
 
Go to the Scratch backdrop library and select the “xy-grid-30px” backdrop. It is basically your 
maze canvas. 
 
By default, the backdrop begins in vector mode. While on this mode before switching it over to 
bitmap mode, using the fill bucket will allow you to choose the background color for the entire 
maze, basically the color that will act as the walls within your maze. Once you have done this, 
switch the backdrop to be in bitmap mode. Using the fill bucket now, you will be able to fill in the 
individual squares that make up the path of a maze. 
 
Tips: 

● Usually always have distinct starting coordinates for the UI sprite 
● If you are trying to get to the end of a maze, define the end of the maze using a different 

color patch of squares. You can then do a simple color collision test to see when the 
player has reached the end. 

● When drawing the maze, try to use up as much space as possible. If your path has lots 
of touch corners, so that in a 2x2 area, 2 squares are touching at the corner, your maze 
will look more visually appealing and complex. 

 



 
Here is an example of one of my mazes: 

 
In this maze, the colors used could be better but eh, it gets the job done. The black is the path, 
pink is the walls, start at top left, end at bottom right. This maze is also done using the 20px 
grid, that’s why it might look a bit more complex. The next maze is over a 30px grid, so it would 
better represent what you make. 
 
The biggest downside of using this way to make the maze is that most of the sprites have to be 
small. 
 
Now for the Maze Racing combination: 
First, choose a distinct location that the Maze Racer AI will start at (if you do not know what the 
Maze Racer AI is please refer to the AI movement section). You should then make a path that 
uses T shapes to lead the AI to the end of the maze. This way, once the AI passes the through 
the T intersection, it will no longer be able to go back through the stem of the maze.  
 

 
Here is an example of a maze that incorporates the T shape interceptions. Blue paths, purple 
walls. In this case, the AI would start at the top left and move its way to the top right, not being 
able to go back once it reaches a T intersection. The T intersections that the AI will pass 

 



through to get to the end are marked with red circles. And thus you pass through the deadly 
game type combination of maze and racing. 
 
Avoidance – the user controlled sprite must avoid moving autonomous sprites to 
complete the objective of the game State  
 
Avoidance is pretty straightforward: avoid the moving AI. Please don’t have the AI that you are 
avoiding not moving, that’s no fun at all. 
 
A common type of game that I used to make a lot, especially in both the 2015-16 and 2016-17 
seasons are chase games - basically a cat and mouse game. You collect something that scores 
you points while avoiding something that is chasing you, losing points / lose the game on 
contact. Have a certain number of points once the time is up. This game was a decent scoring 
game that I basically spammed the entirety of those two seasons. It is definitely not a top 
scoring game as it is not creative or original but the basic concept of the game still can be used. 
 
STATES GAME TYPES: 
 
Shooting – the user controlled sprite must shoot or direct an object(s) during the game to 
complete the objective of the game 
 
Again, like the other game types, I would try to make a game that actually involves shooting 
rather than just directing an object. This way there is no chance that you will be tiered.  
 
Shooting is, yeah, shooting. You are a sprite who shoots something at an AI. Simple enough. 
The way I would usually make a shooting game is basically the chase game that I mentioned 
earlier but instead of collecting something I would shoot the object. Then again, I am not the 
Designer for the game, so this is not my area of expertise. 
 
Racing – the user controlled sprite must complete the objectives of the game before the 
autonomous sprite does  
 
Racing is where you compete against an AI to achieve the object of the game faster. Often 
times my racing games involve a chase game where the AI chases after the collectable instead 
of the UI. See now how useful branching off of the chase game is? 
 
This previous season, 2017-18, there was a huge discussion over 2 player racing. Granted this 
is only a nationals game type but it showed up at the 2018 MIT invitational. In this invitational, all 
but 4 teams where tiered for not following the game type. This is because most people 
interpreted a 2 player racing game as player vs player where it really had to be player vs player 
vs AI or something like that because the AI still had to race the UIs. 
 

 



Building – the user controlled sprite must be involved in the assembling of smaller parts 
or components to complete the objectives in the game  
 
I have to admit, even up to this day I still do not have a concrete building game template. The 
building game type was a widely discussed topic on the 2017-18 Game On forums with many 
people doing building many different ways; however, my partner and I never really had a 
concrete way to do building but somehow never ended up having to do it in a competition. 
Oh, and when you do building make sure the UI is doing the building, not the other sprites. This 
is very important. 
 
NATIONALS GAME TYPES: 
 
Combination of any two of the previous game types  
 
Two player game of any one of the previous game types 
 
I am not going to cover national game types too much because they are pretty self explanatory. 
One thing to remember is when in practice, don’t give yourself game types that don’t make 
sense together with the theme as from my experience all the themes are very reasonable and 
achievable with the game types. 
 
Some tough combinations (from my experience in practice): 

● Maze + Racing (covered over in this guide) 
● 2 Player + Maze (hard to make the game balance) 
● Building + Shooting 
● Building + Racing 
● Building + Maze 

 
(I really struggled with building ;-;) 
 

Points Lossed 

This section will cover where most teams lose points in competition. 
(Note: An explanation of the rubric can be found on soinc.org) 
 
Game Mechanics: 
When I talk to my peers about Game On, the first thing that always comes up is how many 
points did I lose on the left hand side of the rubric in the game mechanics section. Now looking 
back at it, I realize this was very silly of me. I should always be scoring 50/50 on the game 
mechanics section. 
 
Where people usually lose points in Game Mechanics: 

 



● The UC Sprite needs to have complex movement. Most grader’s do not count diagonal 
movement to be complex movement, although the Soinc explanation says so. The best 
and easiest way to get these points is, by far, UC acceleration/velocity. 

● Similarly, AI Sprite often are missing complex movement. I would also recommend 
acceleration/velocity for this, but you can explore other ways to get this point yourself, as 
it is rather wide. 

● Make sure to have sprite collisions with the background. I often forget about this during 
competition, and remember it at the last second, scrambling to add something in. 

● In the debriefing section, make sure that you have a game over. For some reason I’ve 
seen teams that say “Click the Green Flag to Play Again.” This is unacceptable. All you 
need to do is broadcast a Game Over message and then for all your game sprites, hide 
them and stop their code. For the buttons, show them. Done. Easy. 

● Again in the debriefing section, make sure that your variables are hidden and shown 
when they are supposed to, not only the sprites. 

● In the documentation section, make sure you have code for EVERY SINGLE SPRITE. 
Even if multiple sprites are the same, just copy and paste the comments. Also make sure 
to not BS your comments and actually write things that help the grader understand your 
code. Oh, and if you didn’t know, you add comments by right clicking and selecting 
“comment.” 

● In the Code Organization section sometimes points are lossed for the Coding is Efficient. 
Depending on how well the grader knows what he/she is doing (so if they actually know 
what efficient code is or not), will cause your points here to change. Generally people 
would only lose points in this section in big invitationals (such as at MIT) as people know 
more about coding there. For most things, a right click and “clean up” will do. 

 
Game Play 
Lots of the game play section is up to how the graders’ grade. You have been warned. 
 

● Nearly every game that I have ever made, I have lossed points in the “Science of theme” 
section. To get full points, you need to come up with multiple scientific processes that 
support the theme given, explain what they are / what they do, and explain how you 
incorporated them into your game. 

● Graphics is a big oof for me. Yeah, draw good sprites and backdrops. What more can I 
say? Oh, and make sure that your sprites have meaningful sprite changes. Oh, and 
make sure that your backdrop makes sense to the theme and your game. Don’t just 
have some sort of generic backdrop. 

● Sounds is a section that I always sacrifice points in. Myself, personally, I just use the 
sounds found in the Scratch Library. I find that everytime I want to make custom sounds, 
my microphone doesn’t work or picks up too much noise. When adding sounds, make 
sure they make sense within the game and it is best to have them add on to the science 
of the theme. 

● Play Balance is another section that has a lot up to how the grader grades. The way I 
get the levels point is by having a speed change in the AI once the player reaches a 

 



certain point count or a certain amount of time has passed. I then specifically mention 
that this is a level change in the instructions. Also, make sure you have both a Win/Loss 
condition as well as a points system within the game. 

● The “Overall Game” section is every Game On member’s worst nightmare. It’s either 
really good or really bad. I talk about some ways to increase the impression of the game 
in this guide and this is what it is for. Usually if you have a high scoring game, the 
Overall Game section will also have a higher score. Also, the best way to increase the 
score in this section is to be unique. Know that the grader is grading numerous games 
one by one. Try to make your game stand out; maybe interpret the game theme 
differently while making sure you don’t get tiered. 

 

Preparation 
(Another Note: this is all my opinion on how Game On members should prepare based off of my 
past experiences) 
 

How to Start Preparing 

(Note: both the Coder and the Designer should work through these steps separately) 
 
Many people I know have said that anyone can pick up Game On in an hour. They called it a 
meme event and for many teams it was just another one of those events that you don’t expect 
to do well. What people don’t realize is how competitive Game On gets with the point by point 
grind. I do admit that the Game On rubric is not very good as many parts are very vague and up 
for interpretation, however, the rules might slightly be changed for the 2018-19 Scioly Div. B 
season. 
 
Once you tell yourself that you are going to do Game On AND that you will not treat it like it is 
the dumbest and easiest event (although it might be) you should learn the scoring rubric. By 
competition time, you should be able to know where all 100 points come from AND how to get 
them. This will allow you to decide which points you are going to sacrifice in order to get 
everything done in the 50 minutes allocated, which comes back to the coder having to be able 
to work as fast as possible. I am sure that most of the competitive Game On duo’s out there are 
able to get all 100 points within a 3 hour span, but how many can pull off 85+ points (decent 
score) in just 50 minutes? 
 
I am not going to cover specifics over how to get each individual point out there as there are 
numerous resources out there, whether it be on the Scioly wiki or the forums, that contain this 
information. 
 
“I’ve learned the rules. Now what should I do?” 
 

 



Good question. You should make a chase game. “The kind of game that you told us not to 
make?” Yes. A chase game hits most parts of the rubric and can easily achieve an 80+ score in 
50 minutes if done properly. 
 
I do not expect your first game to be godly or perfect or even hit all the points. I just want you to 
try to learn the code yourself. If you make it yourself without the use of any outside resources, 
you truly learn the code. Do not become one of those people who memorize code line by line 
instead of modeling the behavior and figuring out how the code should be written. If you learn by 
yourself, you can come up with more creative things you can do on the spot rather quickly. 
 
After you have made your first game, the next thing to do is look at someone else’s game 
(preferably a high scoring one) and read their code. You are doing this not to memorize blocks 
of code but to understand how they did things and to see if you did something in a different way 
that they did the same exact thing allowing for you to analyze the efficiency of your own code. 
This way, you are looking back at your own code while also improving your coding skills and 
your code’s efficiency.  
 
Some time later, preferably not the same day, remake the chase game you made adding is 
small variations if you would like. Try to incorporate some of the things that the game you 
looked at had. This helps you use the skills that you have seen in work by others and apply it to 
your own game. After this is done, grade your game. 
 
One thing I found when I had other Scioly team members grade my games is that their 
interpretations on the rubric is much looser than what the intentions of the rubric are. I’d often 
have games graded by friends score in the 90s while in competitions similar games would only 
score in the 70s. You know the rubric the best so you should grade your own game and trust the 
grading. Oh, and if you are ever iffy if you got a point or not, just say you missed the point. 
This is just the very beginning of your Game On experience. Now I will be covering how you 
should prepare in general versus where to begin preparing. 
 

How the Coder Should Prepare 

A coder’s main job is to code, not to design. Although the coder can help out with the design of 
the game, they should avoid this and focus on the code of the game to most efficiently use the 
50 minutes given for this event. 
 
A coder should have a folder (or Scratch.mit account) that contains each individual coding bit 
that they use within the season. The folder should contain things such as: 

● The Setup 
● Each of the movement types, INDIVIDUALLY (this is key as these files will only be used 

for reference by yourself) 
● Any games you make during the season(s) with the dates that they were made on 

 



● Any additional gimmicks that are made throughout the season(s) (ex. Health bars) 
 
The coder should develop a habit of trying not to refer to this folder unless preparing for an 
upcoming competition. This way the coder can develop the skills required in an actual 
competition, dragging and dropping the blocks without any outside resources. 
 
The coder should also try to develop as many additional gimmicks that they can think of 
throughout the season. You never know what you might need given a certain theme and game 
type combination. 
 
Individually, the coder should choose two or three game types and make a game based off of it, 
without a theme. Just use basic shapes, such as circles and squares, for sprites. The coder only 
needs to code the stuff that actually goes on when the game is being played; no need for 
instructions, win/loss, commenting, sound, etc.  
 
When preparing with their partner, the coder should  work at a moderate pace trying to make 
sure that everything should work. Test the program often. If something doesn’t work, look 
through the code together with the designer in order to have a better success debugging the 
code. Unlike the individual preparation, the coder should code for a full game rather than just 
the play mechanics. 
 
How to Code 
In this subsection I will explain the basics of Scratch coding incase you are new to it. 
 
The Sections in Scratch 

● Motion: This section contains all of the blocks that move the sprite that you are working 
with. 

● Looks: This section contains all of the blocks that change how the sprite looks or the 
backdrop costume.  

● Sound: This section contains all of the blocks that add sound effects to it. 
● Pen: This section contains blocks that allow you to draw onto the backdrop. 
● Data: This section contains blocks that work with variables. Variables are used to hold 

data (usually numbers for us), just like in Algebra. 
● Events: This section contains blocks that start and end chunks of code. 
● Control: This is probably the most important sections out of all of them. It contains all the 

logic things such as testing and looping. 
● Sensing: This section contains blocks that test to see what is going on. Most of the 

blocks here are booleans (things that are true or false) which are depicted in a “?” in the 
blocks name. 

● Operators: This section contains all your math operations and math functions. 
● More Blocks: This section contains lets you make your own block chunks and use it 

multiple times. You most likely will not need to use this section while making a game in 
50 minutes; however, you can experiment with it if you want. 

 



 
Learn to Code 
Now that you know what all the sections are in Scratch and have looked through some of the 
code blocks you may be wondering how to start putting the blocks together and begin to code… 
 
The first thing you will want to do is create a sprite; it doesn’t have to be anything fancy. Once 
you do that, select the sprite. The blocks you put on the right will now only be for the sprite 
selected. If you would like to code for the whole program and not that specific sprite, select the 
backdrop and code there. 
 
Next, drag the “When Green Flag Clicked” block from the Events tab. Follow this my some kind 
of loop as some kind of move. And there you go! You now have a moving sprite. 
 
To learn more about coding, I would recommend checking out the “Catch Game” found in the 
help section (Click the “?” in the top right hand corner of the screen) as this is the very basics 
that demonstrates a loop and a test. Oh, and when I say test, I mean the “If” block that can be 
found under the Control tab. 
 
Debugging 
When starting out in Scratch, or any type of code language, debugging is a huge part of learning 
how to code. By the time the season is over, you should be a master at coding and rarely have 
to debug in competition, even if you are trying something new for the first time. You should be 
able to write code with little to know error as Game On is all about time management and 
cramming points in. 
 
Hands down, the best way to debug your code is to reread it over and over again. Understand 
that your code is running line by line. Use this knowledge to see where the code is breaking; 
look for where the code got to by knowing what has run and what is not running. 
 
Some things to keep in mind while debugging: 

● Make sure you don’t have collision sprites between 2 sprites in both bodies of code. 
Code is never run simultaneously in Scratch, it is always line by line. Therefore, if you 
have 2 collision tests for the same test, only one will happen. 

● I always avoid clones. They hate me. If you want, you can figure out how to use them 
without getting infinite cloning or glitches. 

● Make sure to check that the code section you are looking over is under the sprite it is 
meant to be under. You don’t want to know how many times I have made this silly 
mistake. 

● Make sure when drawing backdrops that you don’t use vector mode. Vector mode, for 
some reason that I do not know, is very buggy for backdrops. It is perfectly fine for 
drawing sprites, though. 

 

 



During competition, if I come across a bug, I immediately notify my partner and ask them to help 
me look over the code while I am also looking for the bug (Remember: your partner should also 
learn/know the basics of Scratch coding). Two times the efficiency. If you still can’t find the bug, 
scrap the idea if it is small. Your goal is to waste as little time as possible. 
 
Outside of competition, NEVER leave a bug you come across unsolved (Ha. I’m a hypocrite. I 
just ditched clones. I’ve spent hours upon hours looking in to the clone bugs and still have yet to 
find a solution). If you can’t find the problem yourself, get some help. Ask your partner, ask 
others in the event, ask anyone who knows how to code. Shoot me an email if you need to.  
 

How the Designer Should Prepare 

As previously stated, the designer should have a solid understanding of many scientific topics. 
Preferably, the designer should have taken most high level science classes within their school 
curriculum. I do realize that moving this to division B means that students will not know as much 
information over scientific topics unlike those in division C but I expect that the topics given will 
be more reasonable for division B competitors. 
 
The designer should create an organized document that holds a list of possible game themes 
that they come up with. They can also ask others for possible game themes.  
 
Once a solid list is compiled, the designer should then choose a few topics at a time and plan 
out a game for them, without being given the game types. Make sure to include at least 4 
scientific concepts within the game, use the internet if needed. When the designer finishes 
planning out a game, they should list off to the side all the game types that the game they 
created fits. This process should be repeated over and over again, that is the way to prepare as 
a designer. 
 
Remember, an event supervisor would never give you a theme with a game type that does not 
relate to it in any way, probably. When one writes out the game types for the games you make, 
there is a high probability that with the theme you are working on an event supervisor would 
choose one of the game types that the designer listed. 
 
When preparing with their partner, the planner should write on a piece of paper of every 
scientific concept they know over a topic before planning out the mechanics of the game. They 
should then convey their ideas to the coder for their opinions on the game they designed. In this 
event, communication is key; the faster the coder understands the game that the designer 
creates the more successful the duo will be. The designer would then draw out the sprites and 
write the instructions. Make sure to read over the instructions multiple times. They must be clear 
and understandable for the grader. Once done with this, watch as the coder codes making sure 
to point out any bugs or mistakes in the code that you might see. 
 

 



 
 
Welp, that’s about it for this guide. I wish you best of luck in your time spent on Game On. 
 
Feel free to contact me through Scioly private messages or through email 
(nsong2001@gmail.com) over any questions you might have for me over Game On or anything 
else, though I may not always have an answer. 
 
Last Edit: 06/14/2018 

 

mailto:nsong2001@gmail.com

