

DLS/Stevenson East Side Science Olympiad Invitational

Saturday, January 26, 2013

Circuit Lab – Written Test

Team Number: _____ Team Name: _____

Team Members:

- 1. Please record your answers in the space provided. If you fail to record an answer, you will not get any credit for that question.
- 2. There is no penalty for wrong answers EXCEPT for breaking ties.
- 3. You may separate the pages but they ALL must be re-stapled in the correct order at end of the test.
- 4. You have 25 minutes to solve this test, no more.
- 5. Return the complete exam after you are done. Failing to do so will disqualify you from the event.

DO NOT TURN THE PAGE UNTIL YOU ARE TOLD TO!

Score: ______ Rank: _____

- 1. The resistance of an ammeter is 13 Ω and its scale is graduated for a current up to 100A. After an additional shunt has been connected to this ammeter it becomes possible to measure up to 750 A by this meter. The value of shunt resistance is
 - a. 20.0 Ω
 - b. 0.2 Ω
 - c. 2.0Ω
 - d. $2.0 \text{ k} \Omega$

A shunt (resistor) bypasses the excess current to keep the amperage of the ammeter same.

2. Find the equivalent resistance between the terminals A and B.

3. Find the current in the circuit shown below.

4. For the portion of the circuit shown below, the values of I_X and I_Y are respectively

5. Three equal resistors connected in series dissipate 10 W of power. If the same resistors are connected in parallel across the same voltage source, determine the power dissipated.

6. For the following circuit, determine the Voltage V_A and Resistance R_A .

- 7. In a given circuit element the direction of the current is
 - a. Same as the flow of electrons
 - b. Opposite to flow of electrons
 - c. From positive terminal to negative terminal
 - d. Both a. and b.
 - e. Both a. and d.
 - f. Both b. and c.
 - g. Both b. and d.
- 8. Identify the correct order of low to high resistivity.
 - a. Silver, Aluminum, Iron, Carbon, Silicon
 - b. Iron, Silver, Aluminum, Carbon, Silicon
 - c. Iron, Aluminum, Silver, Silicon, Carbon
 - d. Aluminum, Iron, Carbon, Silver, Silicon
 - e. Silicon, Carbon, Aluminum, Silver, Iron

9. Find the equivalent resistance for the following circuit

- 10. After a long time in position 1, the 1μ F capacitor is fully charged. What is the charge on this capacitor?
- The switch is thrown to position 2 and stays in that position. Determine the final charge for both capacitors after the circuit has stabilized.

- 12. What is the polarity of plate A of the capacitor after the circuit has stabilized?
- 13. How much energy was dissipated in the circuit between initial (when the switch is thrown in position 2) and final (circuit has stabilized) states?
- 14. Define Permittivity. What are the SI units for Permittivity?

15. For the following Circuit find

- a. the value of resistance R_L , if the current through it is 0.5 A.
- b. the direction and magnitude of current through resistances 6 Ω , and 12 Ω ,
- c. the Thévenin equivalent voltage V_{Th} ,
- d. the Thévenin equivalent resistance R_{Th},
- e. the Norton equivalent current source $I_{\mbox{\scriptsize N}}$, and
- f. the Norton equivalent Resistance R_N .

