| TEAM NU | MBER | _TEAM NAME | | | |--|---|---|--|-----------------------| | A.
B.
C. | sprung-Russell diagram re
all have the same age.
all have the same mass.
all have the same chemic
are at different stages of | cal composition. | s because it shows stars that | | | A.
B.
C. | ar like our sun, once fusio
white dwarf
black dwarf
red giant
blue supergiant | n reactions in the ma | n sequence phase stop, the star | will next become a | | A.
B.
C. | servation leads us to the
They have different spec
They have different lumin
They have different mass
We can directly see then | tral classes.
nosity classes.
ses. | volve? | | | A.
B.
C. | olving cluster, which stars
Stars with masses like th
Stars with sizes smaller t
The most massive stars (
The stars with the most | e sun's.
han the sun's.
upper main sequence | | | | A.
B.
C. | ostar's mass is too low to
white dwarf
brown dwarf
black dwarf
red giant | begin fusion, instead | of forming a star, it will become | a | | such as car
further ene
A.
B.
C.
D. | bon, oxygen, etc., into he | avier nuclei AND also | nassive stars can continue to trans
generate excess energy up to a
not that is produced when this limi | limit beyond which no | | A.
B.
C. | at have ejected a planetar
red giants.
supernovae.
protostars.
white dwarfs. | y nebula go on to bed | come | | | A.
B.
C. | pectral sequence is correct
Radio, infrared, visible, u
Infrared, visible, ultraviol
Gamma ray, x-ray, ultrav
Visible, ultraviolet, infrare | ltraviolet, x-ray, gamı
et, radio, gamma ray
iolet, visible, infrared | , x-ray
, radio | | 9. If a star is observed to have a high degree of red shift, it is: A. moving toward the observer rapidly. B. moving away from the observer rapidly.C. rotating extremely rapidly on its axis.D. undergoing a rapid change in stellar fusion reactions.