TEAM NU	MBER	_TEAM NAME		
A. B. C.	sprung-Russell diagram re all have the same age. all have the same mass. all have the same chemic are at different stages of	cal composition.	s because it shows stars that	
A. B. C.	ar like our sun, once fusio white dwarf black dwarf red giant blue supergiant	n reactions in the ma	n sequence phase stop, the star	will next become a
A. B. C.	servation leads us to the They have different spec They have different lumin They have different mass We can directly see then	tral classes. nosity classes. ses.	volve?	
A. B. C.	olving cluster, which stars Stars with masses like th Stars with sizes smaller t The most massive stars (The stars with the most	e sun's. han the sun's. upper main sequence		
A. B. C.	ostar's mass is too low to white dwarf brown dwarf black dwarf red giant	begin fusion, instead	of forming a star, it will become	a
such as car further ene A. B. C. D.	bon, oxygen, etc., into he	avier nuclei AND also	nassive stars can continue to trans generate excess energy up to a not that is produced when this limi	limit beyond which no
A. B. C.	at have ejected a planetar red giants. supernovae. protostars. white dwarfs.	y nebula go on to bed	come	
A. B. C.	pectral sequence is correct Radio, infrared, visible, u Infrared, visible, ultraviol Gamma ray, x-ray, ultrav Visible, ultraviolet, infrare	ltraviolet, x-ray, gamı et, radio, gamma ray iolet, visible, infrared	, x-ray , radio	

9. If a star is observed to have a high degree of red shift, it is:

A. moving toward the observer rapidly.

B. moving away from the observer rapidly.C. rotating extremely rapidly on its axis.D. undergoing a rapid change in stellar fusion reactions.