MIT Invitational Tournament Cell Biology Exam ANSWER KEY

MIT Invitational Tournament 2015 Cell Biology ANSWER KEY

NAMES:		A	ANSWE	TEAM ID				
SCH	OOL:							
	1/	2 pt for ea	ch row fully	correct.				
	Part	Plant	Animal	Prokaryote		SEE ATTA	CHED SHEET	
1.	(a)	x		х	6	Scoring: 1 nt for	each compound on	
	(b)		х	х	6.		th (c,d,g,l,m,n)	
	(c)	x					npound off the path	
	(d)		х			(a,b,e	,f,h,i,j,k)	
	(e)	х	х					
	(f)	x	х				2 0 0	
	(g)			х	7.	A <u>2</u> B	<u>2</u> C <u>0</u>	
	(h)		х			D_ <u>0</u> E	2	
	(i)	x	х	х	•	A <u>2</u> B	<u>8</u> C 2	
	(j)	х			8.	D 6 E		
	1 pt each					0		
2.	A <u>2</u>	B_	<u>1</u>	C_ <u>3</u>	9	<u>C10</u> 11	D 12ABD	
	D <u>5</u>	E_	<u>4 or 6</u>	F <u>4 or 6</u>	13.	A _(Photosystem) II	B Plastoquinone	
-		2 nt	s nossible.			C_(Cytochrome) b6	of D_Plastocyanin_	_
3.	2 pts possible: 1 pt for each valid reason					E (Photosystem) I	F NADPH	
	• May require chaperonin to fold						_	
		properly Mav require	e certain subi	unit	14.		EBREAK	
		compositio	n not met in	vitro			flow repeatedly throug cytochrome b6f. They	-
			e post transla			do not react to forn	• •	
	modification which cannot be carried out in prokaryotic cells						ough both Photosyster	n I
		(anything a	bout glycosyl			and II: do react with	NADPH. (1pt)	
		translation acceptable	cleavage, etc	are		B. Need to generate	e a greater ratio of ATP	,
		P				to NADPH than non	cyclic flow can provide	
						(1pt)		
4.	B and F	1 pt for e	ach correct o	choice				
		extraneous				C. NADPH is a source electrons/reductive	0	
-		1	nt each				ree energy but is not a	
5.		1 1	pt each			reducing agent. (1p	t)	

 1 pt each

 A Nucleus
 B Smooth ER

 C Golgi
 D Vacuole

 E Rough ER
 F Flagella/Cilia

D. Ribulose 1,5 Bisphosphate Carboxylase/ Oxygenase (DO NOT ACCEPT "RUBISCO")

15.	A <u>PEP Carboxylase</u> B <u>Malate</u>	18.	B. 1 pt for correct answer.		
			1 pt for work that shows understanding		
	C <u>CO</u> 2 D <u>Calvin Cycle</u>				
16.	TIEBREAK 2 pts each A. Photorespiration (1pt)/ high affinity for oxygen (1pt). RuBisCo can also use oxygen as a substrate instead of CO ₂ , energy is wasted on unproductive fixation of oxygen.: when this occurs, energy must be spent to restore the ribulose.		Total energy: 4*2*1000*3600 = 28,800,000 Joules Total energy converted: 26.5 g CO2 * 10,800 = 286,200 Joules Efficiency ≈ 0.01 or 1%		
	B. Uses PEP Carboxylase to perform initial fixation (1pt – don't have to explicitly montion PEP carboxylase, but explain that				
	mention PEP carboxylase, but explain that initial fixation is carried out by an enzyme	2 pts each for 19 and 20			
	with less affinity for oxygen.)	19.	D 20. Histidine		
	Releases CO2 in a controlled environment	19.	D 20. <u>Histidine</u>		
	to boost CO2 levels for RuBisCo (1pt)	21.	1 pt each		
		21.	A. Starch has α 1-4 glycosidic bonds.		
		I	Cellulose has β 1-4 bonds, which our		
	C. CAM metabolism (1pt) CO2 fixed into organic acids at night and		enzymes are incapable of digesting.		
	released during day for Calvin cycle. (1pt)				
]	B. Energy storage		
	A-H ½ pt each, I-K 1 pt each				
. –	A <u>Cristae</u> B <u>Outer Membrane</u>		C. Starch		
17.	C <u>Matrix</u> D Intermembrane Space		D. Chitin		
	E Inner Membrane F <u>Stroma</u>				
	G <u>Thylakoid</u> H <u>Granum</u>	22.	TIEBREAK		
	*E and A are interchangeable		(1/2 pt correct answer, ½ pt explanation)		
	I. Mitochondria: Intermembrane space		A. 4: Many positive side chains to interact		
	Chloroplase: Thylakoid [Lumen]		with the negative DNA molecule		
	J. Starch granules K. Endosymbiosis				
	L. (2 pts max: 1 pt for any of):		B. 3: All nonpolar side chains that are		
	Similar transport proteins to bacteria		stable in the hydrophobic environment		
	Reproduce by binary fission		inside the plasma membrane.		
	Partly independent genomes (similar in		C. 1: Only chain with no proline or glycine		
	structure to bacteria—plasmids) Ribosomes are similar to bacteria		residues, both of which heavily destabilize		
	Chloroplast internal structure is closely related		alpha helices.		
	to cyanobacteria				
			D. Many negatively charged side chains to		
18.			bind positive cations.		
	A. 1 pt for correct answer.				
	1 pt for work that shows understanding	23.	½ pt each		
	26.5g CO2 = .602 mol -> .1 mol glucose = 18.0g		A <u>Prophase</u> B <u>Telophase</u>		
			C <u>Anaphase</u> D <u>Metaphase</u>		

TEAM ID

			TEAM ID
24.	1 pt each A. Metaphase B. Sister chromatids cannot separate, so the chromosomes are stuck on the equator.	30. 31.	ACD 0.5 pts each
25.	1 pt for correct consequence, 1 pt for correct reasoning Uncontrolled cell growth and replication, since cyclin levels remain high and CDKs are		A. Active B. Hydrolysis of ATP C. Na ⁺ K ⁺ [Opt: Cl] TIEBREAK (2 pts)
26.	constitutively active. ½ pt each A <u>1 billion</u> B <u>2 billion</u>		Cl ⁻ is retained in the cytosol since the transporter is broken. To counterbalance the charge Na ⁺ is also retained. This makes the cytosol hypertonic and causes the cells to retain water. This retention of water makes the mucus thicker than usual.
27.	C <u>0.5 billion</u> 1 pt each (A and B can be switched)_ A <u>Techoic Acid</u> B <u>Lipotechoic Acid</u> C <u>Peptidoglycan</u> D <u>Cell Membrane</u>	33.	0.5 pts each A2 B2 C3 D1 E1 F3 G1 H1
28.	¹ / ₂ pt for each component present ¹ / ₂ pt for each component in the right place -1/2 pt for each extra component	34.	 1 pt: 0.5 pts each property Decreases free energy of activation[speeds up reaction] Is not consumed in the reaction.
	 From outside to inside Lipopolysaccharides Outer cell membrane Peptidoglycan/periplasmic space Inner cell membrane 	35.	1 pt each AT BT CF DF EF FT
		36.	1 pt B is the fastest. Lowest max activation energy along the pathway.
29.	1 pt each A. Phospholipids B. Ampipathic: head is polar and tail is nonpolar	37.	TIEBREAK 2 pts each: 1pt right type, 1 pt explanation A. Noncompetitive Inhibitor. V _{max} was is reduced compared to no inhibitor. (Accept allosteric if explanation correct)
	C. Van Der Waals / hydrophobic interactions D. Allows greater membrane fluidity by disrupting interactions between saturated phospholipid tails.		B. Competitive Inhibitor. V_{max} is not affected, but the apparent K_m is different.

TEAM ID

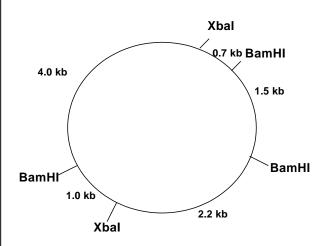
38. A. (1 pt) Any value from 10-15 uM is acceptable.

B. (3 pts) 1pt – count anywhere from 109 – 133 cells in the range.

1pt – calculate surface area of view area = (100uM)² = 0.01 mm²

1pt – Divide count by area in mm² to find density DROPPED DUE TO TYPO IN QUESTION

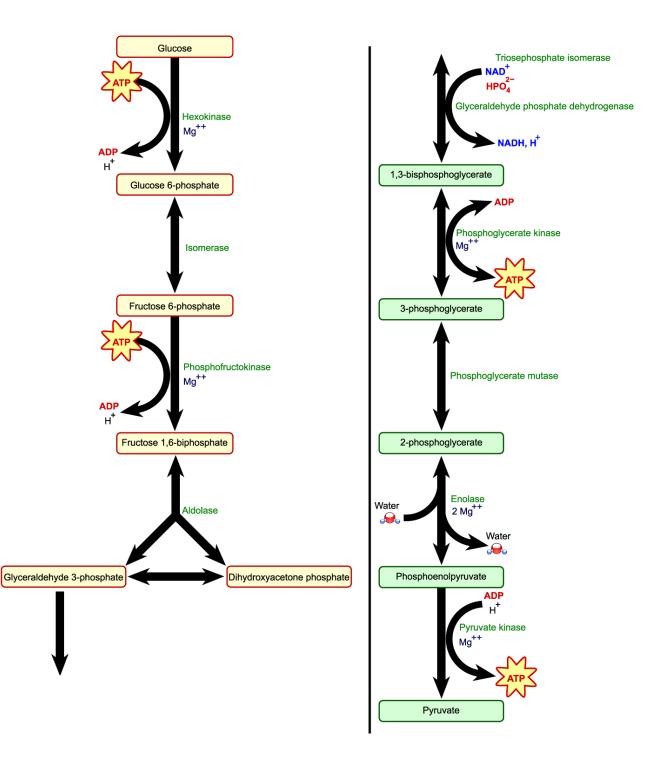
C. (1 pt) Surface area to volume ratio (or equivalent)


D. (1 pt) Eukaryotic

39.

TIEBREAK

A. (1pt) 9.4 kB


B. (2 pts): Complete correct plasmid is shown below. B is only BamHI sites.

C. (2 pts) Xbal sites only

BONUS: (2 pts) Complete plasmid

Supplement: Glycolysis pathway

