92. Parallax: $D (pc) = \frac{1}{m (c m)}$ $\frac{1}{p \left(arcsec \right)} = \frac{1}{0.00}$ $\frac{1}{0.002}$ = 500 pc

- 93. Distance modulus: $d(pc) = 10^{m-M+5/5} = 10^{(5.4+19.6+5)/5} = 10^{30/5} = 1,000,000 pc$
- 94. Distance modulus is defined as $m M$. The absolute magnitude M is defined to be the apparent magnitude at a distance of 10 pc, so $m - M$ would equal zero at 10 pc.

Alternately: $d (pc) = 10^{(0+5)/5} = 10^1 = 10 pc$

95. By definition, 5 magnitudes is equal to a factor of 100 in brightness. So this object is now 1/100 times as bright.

Alternately, use the distance modulus: Say the object originally has $M = 0$, $m = 0$.

 $d_0 = 10^{(0-0+5)/5} = 10^1 = 10 pc$ $d_{dim} = 10^{(5-0+5)/5} = 10^2 = 100 pc$

By the inverse square law, brightness (or flux) is proportional to $\frac{1}{d^2}$, so if the same object is 10 times further, it is 1/100 times as bright.

- 96. This question is based on the LRT relation, $L = R^2T^4$.
	- a. $L_{new} = (5R)^2 T^4 = 25 L$ b. $L_{new} = R^2 (3T)^4 = 81 L$ c. $L_{new} = (8R)^2 \left(\frac{1}{2}\right)$ $\left(\frac{1}{2}T\right)^4 = 64 R^2 * \frac{1}{16}$ $\frac{1}{16}T^4 = 4 L$

97. This question is based on the inverse square law, $\propto \frac{1}{\epsilon^2}$ $\frac{1}{d^2}$, which can also be written $\frac{F}{F_0} = \frac{d_0^2}{d^2}$ $rac{u_0}{d^2}$.

a.
$$
F = \frac{(1 \text{ AU})^2}{(0.4 \text{ AU})^2} F_0 = \frac{1}{(2/5)^2} \left(1 \frac{W}{m^2} \right) = \frac{25}{4} \left(1 \frac{W}{m^2} \right) = 6.25 \frac{W}{m^2}
$$

b. $F = \frac{(1 \text{ AU})^2}{(5 \text{ AU})^2} F_0 = \frac{1}{25} \left(1 \frac{W}{m^2} \right) = 0.04 \frac{W}{m^2}$

98. This question and the next one are based on Wien's Law, $\lambda_{max} = \frac{b}{T}$ $\frac{b}{T}$. The constant *b* is usually equal to 2.898 $*$ 10⁶ nm K, but setting it equal to 3 $*$ 10⁶ nm K makes things easier.

a. $\lambda_{max} = \frac{(3*10^6 \text{ nm K})}{30,000 \text{ K}}$ $\frac{10^{10} \text{ km K}}{30,000 \text{ K}} = 100 \text{ nm}$ b. Ultraviolet (violet is \sim 300 nm)

99.

a.
$$
\lambda_{max} = \frac{(3 \times 10^6 \text{ nm K})}{3,000 \text{ K}} = 1000 \text{ nm}
$$

b. Infrared (red is \sim 700 nm)

100.

- a. Use the Stefan-Boltzmann Law, $F = \sigma T^4$ $F = \left(6 * 10^{-8} \frac{W}{m^2 K^4}\right) (10{,}000 K)^4 = \left(6 * 10^{-8} \frac{W}{m^2 K^4}\right) 10^{16} K^4 = 6 * 10^8 \frac{W}{m^2 K^4}$
- b. Luminosity is just flux times area, in this case surface area. $L = F * A = \left(6 * 10^8 \frac{W}{m^2}\right) \left(1 * 10^{19} m^2\right) = 6 * 10^{27} W$