Given the temperature of the object, what would be the wavelength of the peak of the object spectrum. $ \lambda_{\text{max}} = \frac{3000.000}{7} \text{ is } \text{Nm} \text{ so } \frac{3000000}{3100} = 908\text{ pm} \text{ a.} $ Would this peak be included in the band that the image was made in? No And why? $ 1.4 \text{ is the absolute magnitude of the object?} $ What is the absolute magnitude of the object? $ \frac{1}{100763} = \frac{1}$	
Would this peak be included in the band that the image was made in? No And why?	
Would this peak be included in the band that the image was made in? No And why?	9680
What is the absolute magnitude of the object? $M_{V} = -5 + 5 \log d \qquad \text{in passecs (pc)} \qquad d = \sqrt{n}$ $M_{V} = 5 + .58 - 5 \left(\log \frac{1}{100763} \right) \qquad = n - 5.0$ What is the star's radius in km? $M_{V} = 131 \text{ pc}$ $M_{V} = 12 = 140$	
What is the absolute magnitude of the object? $M_{V} = \frac{1}{100763} \frac{1}{10000000000000000000000000000000000$	-
What is the absolute magnitude of the object? $ \frac{m_V - 1}{M_V} = -5 + 5 \log d \qquad \text{i.i. passes (pc)} \qquad d = \frac{1}{N_V} $ $ \frac{d}{M_V} = \frac{1}{N_V} = \frac{1}{$	-
$m_{V} - M_{V} = -5 + 5 \log d \qquad d = \frac{1}{2} \log c $ $d = \frac{1}{2} $	
$m_{V} - M_{V} = -5 + 5 \log d \qquad d = \frac{1}{2} \log s \cos (pc) \qquad d = \frac{1}{2} \log s$	
$M_{\nu} = 5 + .58 - 5 \left(\log \frac{1}{.00763} \right) = 70 - 5.0$ What is the star's radius in km? $d = 4v = 131pc$ $1'' = 1pc = 1Av$	
$M_{\nu} = 5 + .58 - 5 \left(\log \frac{1}{.00\%3} \right) = 70 - 5.0$ What is the star's radius in km? $d = \frac{1}{4} = 131 \text{ pc}$ $1'' \text{ at } 1 \text{ pc} = 1 \text{ A} \text{ U}$	/ W
$M_{\nu} = 5 + .58 - 5 \left(\log \frac{1}{.00\%3} \right) = 70 - 5.0$ What is the star's radius in km? $d = \frac{1}{4} = 131 \text{ pc}$ $1'' \text{ at } 1 \text{ pc} = 1 \text{ A} \text{ U}$	
What is the star's radius in km? $d = 4y = 131pc$	
"at Ipc = LAU	
" at Ipc = LAU	
" at Ipc = LAU	
$\int_{0}^{\infty} at pc = AU $	
1" at 131 PC = 131AU	<u></u>

7.86/2 = 3.93 fr = Radius!

3.93 21 7 1.5 x 10 8 Km/A0 = 590 x 108 Km

Between the cobots of Mars and Jupiter

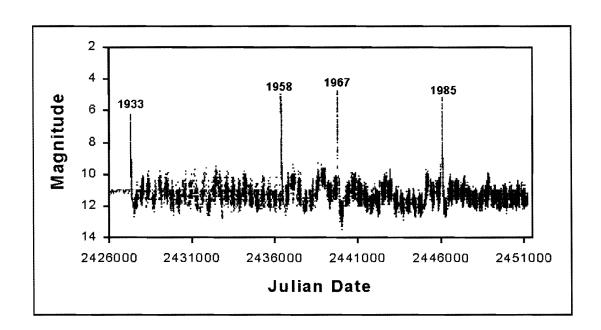
e Find the ratio of the luminosities of Betelgeuse and the Sun by comparing their absolute magnitudes. _____

 $\frac{L_{1}/L_{2} = 10^{(M_{2} \cdot M_{1})/2.5}}{= 10^{(4.83 - (-5.0))}}$

= 101,406

= 8550

f Now find the ratio of the luminosities of Betelgeuse and the Sun by comparing their radii and measured temperatures.

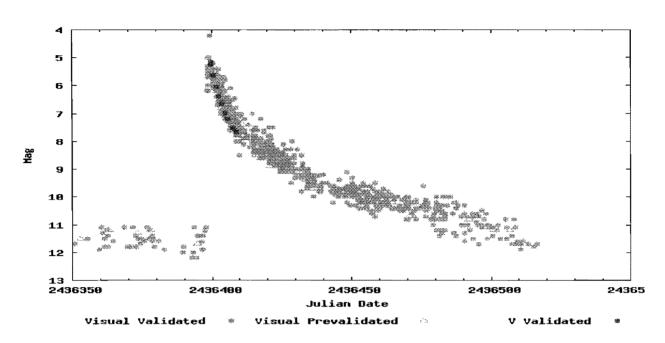

 $\frac{L_{1}/L_{2}}{L_{2}} = \left(\frac{R_{1}}{R_{2}}\right)^{2} \left(\frac{T_{1}}{T_{2}}\right)^{4}$

 $= \left(\frac{59108}{7\times10^{5}}\right)^{2} \times \left(\frac{3100}{5778}\right)^{6}$

= (71000) (.083)

Team Name	Team Number
Look at your answers for parts e and f. Are the same?	No
Are they close (in an astronomers sense)?	, and a of Meguitude off
We now have two derived (calculated from experimental me ratio of the luminosities of Betelgeuse and the Sun. Assume to measured correctly. Given that any measurement will have sof the following measured quantities for Betelgeuse would no overall error in our determination absolute magnitude assume measurement was 5%.	that we have the values for the Sun some error associated with it, which nake the largest contribution to the
1 Angular Diameter	
2 Distance	
3 Temperature	
4 Apparent Magnitude	
Support your answer for part h (i.e show some work)	
Without the evice Len = (1.05) Len = (6.240°) 2/(5) = (7930000)/7	10000 =].
Back Throug L→M Formula >	M,-M2 = -7.5 Los Li
	MM2 = . 16 mag
For Distance we werk in pareller and the	he difference in calculated
Megallode is Just the liftence in the	5 log of toms NError = 1.
1.05 x .00763 = .008 5 los (-	(0703) - 110 (-104) = 10 me
For temp workes we did for Radius	
Lern/2 = (3255) 4/(3100)4 = 1.2	<u> z </u>
Back through gives = -2.5	106 (1.27) =21 may
For magnifude 1.05:058 = .61	.6158 =03 mag
a good gupss 15 Tomperature as	s the dependency is It

2 This is a spectrum of one of the DSO's for this year.


- a Which of our DSOs is shown here? RS Ophivchi
- b What sort of variable star is this DSO? <u>Vacurent</u> <u>Nova</u>
- c At a maximum, could an observer see this object with the naked eye? <u>Yes</u>
- Would this object be observable from Mentor High School (assuming a power outage took out all of those nasty city lights and some thoughtful lumberjack had cleared all of the trees from the southern horizon)?

 Yes, Ophivers is Near The ecliptic

 The decilar from RS Oph is -6"

f

Here is a closer look at the 1958 outburst

Looking at the rapid rate of the increase (less than 1 day) do you think a change of temperature е

RITAR = 20 RI= R2+OR

2, +OR = 20R,

AR = 19 R2 4

For Temporature

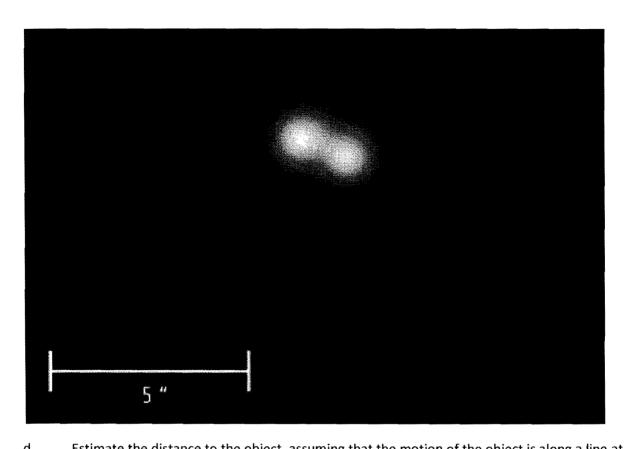
무 17 = 398 = - 4.46

AT = 3.46 TO K

Achange of a 19 miss for Just Radius Us Achange of 3.47 miss for Temp Agan Thwins

3 This is a false color image of the field of one of this years DSOs.

a Which object is in this field? RX J0812 -4300

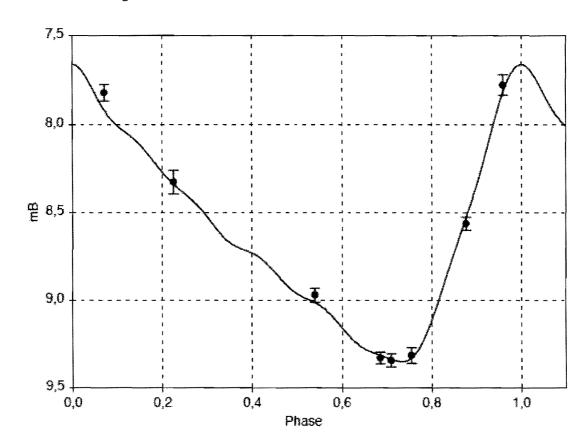

b What sort of object is this? Super Nova Rompant / Noutron Stan

c What part or parts of the electromagnetic spectrum are represented in this false color image?

X-Roy and Visual

This is a close-up of an overlay of two images of the DSO, taken 12/21/1999 and 04/25/2005, with a scale bar.

A radial velocity measurement of the object give a value of +1350 km/sec.



<i>l</i>
year)
Au _
& Km
lies that
asmila
1 then 16

 \Rightarrow

5 1-450 VR = B 50 KW

This is a light curve for one of the DSOs 4

The period of the variable is 41.5 days. The ligh curve given is in the B band. A visual magnitude for this object is $m_V = 7.0$.

Which of our DSOs is this? RS Puppis а

What type of variable star is this? _____ classical cepheid b

Calculate the distance to this object from the data given. C

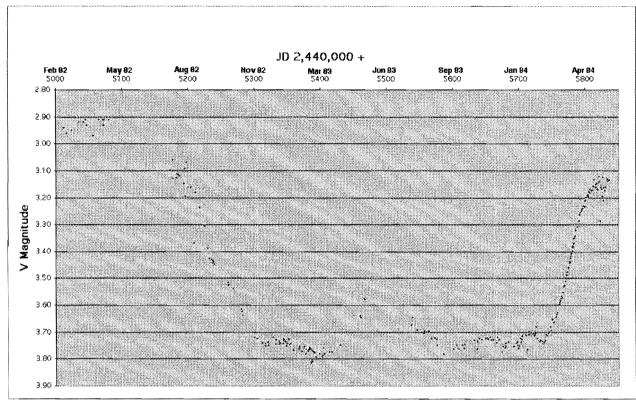
First find the Absolve Magnitude, use the P/L Pelotioniship $M_{V} = -2.8 \log P - (1.43) \quad \text{with Pindays}$

= -2.8/05(41.5) -1.43

= -5.96Now use $m_v - M_v = -5 + 5/c_5 d$ $7.0 - (-5.96) + 5 = 5 \log d$ 3.592 = 600 d d = 3900 pc

b

5 This is a picture of two of our DSOs.


TTauri Zeiter orden а

Hands Variable Nobola

Label two objects in the picture. An arrow with an a or b at the end will do. C

Describe what we are seeing here in terms of the life of a star. A Tauri Stan 15 d Just collapsing from a dust Cloud I + has just started to burn hydrogen.
The ucbulosity is material that remains from the Protostallow Cloud

Assuming clear weather (never a good assumption in February in Northeast Ohio), could we е observe this object from Mentor after dark tonight? Yes Taurus 15 high in The sky at this time of your

- a Which DSO is this? Epoilon Arigae
- b What sort of variable star is this? Eclipsing Binary
- This plot only shows the "Interesting" part of the light curve. If you have answered part a and/or part b correctly, you should be able to tell me about the rest ("Boring" part) of the light curve. Do so. The Restor The Light Curve will be flat at the Bright Level.

If you were paying attention to this year's event description, you should be able to tell me why

this DSO is particularly topical. Do so. There is a Nation with the Year of Astronomy!

Which cole brates the 400 the Januar sory of Gallileo's use of a

tolescape for Astronomical observations. Also Epsilon Aurispe

15 about to enfor the actips of thase which only happers every 27 years.