TEAM NAME:	TEAM NUMBER:

Islip Invitational 2013 Technical Problem Solving Examination

Do not open this booklet until instructed to do so. Goggles must be worn at all times during this examination.

Instructions

Place the answers to each question in the space provided. With any calculations, **all work** must be shown. This includes substitution of values into the appropriate equations or dimensional analyses **with units**. Failure to include the correct units with the proper work and/or the final answer will result in point deduction from each question. Points will also be deducted for failing to report the collected data to the greatest degree of precision. Points will also be deducted for failing to report both the magnitude and algebraic sign of the calculated result, when appropriate.

Please note that the teams have to perform two separate experiments as part of the examination. Please allow sufficient time to complete both parts.

In the event of a tie, tiebreaker questions have been designated with an asterisk (*).

You are allowed to separate the packet and work in any order as long as the packet is stapled in the correct order when submitted to the event supervisor.

Potentially Helpful Information

 \mathcal{R} = 0.08206 L•atm/mol•K = 8.314 J/K•mol C_{water} = 4.18 J/g•K 1 atmosphere = 760 torr = 760 mmHg = 101.3 kPa

Student Names:			

Standard Reduction Potentials in Aqueous Solution at 25⁰C

Reduction Half-Reaction			E° (V)
$F_2(g) + 2 e^-$	·>	2 F ⁻ (aq)	+2.87
$H_2O_2(aq) + 2 H_3O^+(aq) + 2 e^-$		4 H ₂ O(ℓ)	+1.77
$PbO_2(s) + SO_4^{2-}(aq) + 4 H_3O^+(aq) + 2 e$	_→	$PbSO_4(s) + 6 H_2O(\ell)$	+1.685
$MnO_4^-(aq) + 8 H_3O^+(aq) + 5 e^-$	\rightarrow	$Mn^{2+}(aq) + 12 H_2O(\ell)$	+1.52
$Au^{3+}(aq) + 3 e^{-}$	\rightarrow	Au(s)	+1.50
$Cl_2(g) + 2 e^-$	\rightarrow	2 Cl ⁻ (aq)	+1.360
$\text{Cr}_2\text{O}_7^{2-}(\text{aq}) + 14 \text{ H}_3\text{O}^+(\text{aq}) + 6 \text{ e}^-$	\rightarrow	$2 \text{ Cr}^{3+}(\text{aq}) + 21 \text{ H}_2\text{O}(\ell)$	+1.33
$O_2(g) + 4 H_3O^+(aq) + 4 e^-$	\rightarrow	6 H ₂ O(ℓ)	+1.229
$Br_2(\ell) + 2 e^-$	\rightarrow	2 Br ⁻ (aq)	+1.08
$NO_3^-(aq) + 4 H_3O^+(aq) + 3 e^-$	\rightarrow	$NO(g) + 6 H_2O(\ell)$	+0.96
$OCl^{-}(aq) + H_{2}O(\ell) + 2 e^{-}$	\rightarrow	$Cl^-(aq) + 2 OH^-(aq)$	+0.89
$Hg^{2+}(aq) + 2 e^{-}$	\rightarrow	$\mathrm{Hg}(\ell)$	+0.855
$Ag^+(aq) + e^-$	\rightarrow	Ag(s)	+0.80
$Hg_2^{2+}(aq) + 2 e^-$	\rightarrow	2 Hg(ℓ)	+0.789
$Fe^{3+}(aq) + e^{-}$	\rightarrow	$Fe^{2+}(aq)$	+0.771
$I_2(s) + 2 e^-$	\rightarrow	2 I ⁻ (aq)	+0.535
$O_2(g) + 2 H_2O(\ell) + 4 e^-$	\rightarrow	4 OH ⁻ (aq)	+0.40
$Cu^{2+}(aq) + 2 e^{-}$	\rightarrow	Cu(s)	+0.337
$Sn^{4+}(aq) + 2 e^{-}$	\rightarrow	Sn ²⁺ (aq)	+0.15
$2 H_3O^+(aq) + 2 e^-$	->	$H_2(g) + 2 H_2O(\ell)$	0.00
$Sn^{2+}(aq) + 2 e^{-}$	\rightarrow	Sn(s)	-0.14
$Ni^{2+}(aq) + 2 e^{-}$		Ni(s)	-0.25
$V^{3+}(aq) + e^{-}$	\rightarrow	$V^{2+}(aq)$	-0.255
$PbSO_4(s) + 2 e^-$	\rightarrow	$Pb(s) + SO_4^{2-}(aq)$	-0.356
$Cd^{2+}(aq) + 2 e^{-}$	\rightarrow	Cd(s)	-0.40
$Fe^{2+}(aq) + 2 e^{-}$	\rightarrow	Fe(s)	-0.44
$Zn^{2+}(aq) + 2 e^{-}$	\rightarrow	Zn(s)	-0.763
$2 H_2O(\ell) + 2 e^-$	\rightarrow	$H_2(g) + 2 OH^-(aq)$	-0.8277
$Al^{3+}(aq) + 3 e^{-}$	\rightarrow	Al(s)	-1.66
$Mg^{2+}(aq) + 2 e^{-}$	\rightarrow	Mg(s)	-2.37
$Na^+(aq) + e^-$	\rightarrow	Na(s)	-2.714
$K^{+}(aq) + e^{-}$	\rightarrow	K(s)	-2.925
$Li^+(aq) + e^-$	\rightarrow	Li(s)	-3.045

helium 2 He	neon 10	Ne	20,180	argon 18	Ar	39,948	krypton 36	Ž	83.80	xenon 5 2	Xe	131,29	radon 86	Rh	222			
	fluorine 9	Ш	18.998	chlorine 17	\overline{c}	35,453	bromine 35	B	79.904	iodine 53		126.90	astatine 85	At	[210]			
8	oxygen 8	0	15,999	sulfur 16	S	32.065	selenium 34	Se	78.96	tellurium 52	Le	127.60	polonium 84	Po	[503]			
0	nitrogen 7	Z	14.007	phosphorus 15	۵	30.974	arsenic 33	As	74.922	antimony 51	Sb	121.76	bismuth 83	i.	208.98			
	carbon 6	ပ	12.011	14	S	28.086	germanium 32	Ge	72.61	20 ⊞	Sn	118.71	ead 82	Pb	207.2	ununquadium 114	Uud	[289]
Č	boron 5	m	10.811	aluminium 13	A	26.982	gallium 31	Ga	69.723	indium 49	_	114.82	thallium 81	F	204.38			
Į.							zinc 30	Zn	65.39	cadmium 48	Co	112.41	mercury 80	T	200.59	ununbium 112	Uub	[277]
							copper 29	CC	63,546	silver 47	Ag	107.87	plog 79	Au	196.97	unununium 111	Unn	[272]
Ç.							nickel 28	Z	58,693	palladium 46	Pd	106.42	platinum 78	F	195.08	ununnilium 110	Uun	[271]
Ē							cobalt 27	ပ္ပ	58,933	rhodium 45	R	102.91	midium 77	_	192.22	meitnerium 109	¥	[268]
S							ig 26	Fe	55.845	ruthenium 44	Ru	101.07	osmium 76	0s	190.23	hassium 108	HS	[269]
Œ.							manganese 25	Mn	54.938	technetium 43	ت ا	86	rhenium 75	Re	186.21	bohrium 107	Bh	[264]
u.							chromium 24	ر ک	51.996	molybdenum 42	⊗	95.94	tungsten 74	>	183.84	seaborgium 106	Sq) [266]
0						- 1		>							- 1			
7.4 M							titanium 22	Sc Ti	47.867	zirconium 40	Zr	91.224	hafmium 72	Ŧ	178.49	utherfordium 104	R	[261]
6							scandium 21	Sc	44.956	yttrium 39	>	88.906	utetium 71	Ľ	174.97	lawrencium 103	۲	[262]
						١							57-70	*		89-102	*	
G C C C C C C C C C C C C C C C C C C C	beryllium 4	Be	9.0122	magnesium 12	Mg	24.305	calcium 20	Ca	40.078	strontium 38	S	87.62	barium 56	Ba	137.33	radium 88	Ra	[226]
1,0079	lithium 3	1	6.941	mnibos 11	Na	22.990	potassium 19	¥	39.098	rubidium 37	Rb	85.468	caesium 55	Cs	132.91	francium 87	F	[223]

	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	1	thulium	ytterbium
Ap sprips	/6	28	66	9	6-	79	63	40	69	99	/9		69	2
	<u>n</u>	Ce	Ā	O Z	Pm	Sm	Ш	O U	Tp	2	P P		H	Ϋ́
	138.91	140.12	140.91	144.24	1145	150.36	151.96	157.25	158.93	162.50	164.93		168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium		mendelevium	nobelium
series	88	90	91	92	93	94	92	96	97	86	66		101	102
	Ac	F	Ра)	N Q	Pu	Am	CH	路	ن	Es	Fm	թ ⊠	9 N
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]		[258]	[259]

VAPOR PRESSURE OF WATER

T	P	T	P	Т	P	T	P
°C	torr	°C	torr	°C	torr	°C	torr
19.1	16.581	22.1	19.948	25.1	23.897	28.1	28.514
19.2	16.685	22.2	20.070	25.2	24.039	28.2	28.680
19.3	16.789	22.3	20.193	25.3	24.182	28.3	28.847
19.4	16.894	22.4	20.316	25.4	24.326	28.4	29.015
19.5	16.999	22.5	20.440	25.5	24.471	28.5	29.184
19.6	17.105	22.6	20.565	25.6	24.617	28.6	29.354
19.7	17.212	22.7	20.690	25.7	24.764	28.7	29.525
19.8	17.319	22.8	20.815	25.8	24.912	28.8	29.697
19.9	17.427	22.9	20.941	25.9	25.060	28.9	29.870
20.0	17.535	23.0	21.068	26.0	25.209	29.0	30.043
20.1	17.644	23.1	21.196	26.1	25.359	29.1	30.217
20.2	17.753	23.2	21.324	26.2	25.509	29.2	30.392
20.3	17.863	23.3	21.453	26.3	25.660	29.3	30.568
20.4	17.974	23.4	21.583	26.4	25.812	29.4	30.745
20.5	18.085	23.5	21.714	26.5	25.964	29.5	30.923
20.6	18.197	23.6	21.845	26.6	26.117	29.6	31.102
20.7	18.309	23.7	21.977	26.7	26.271	29.7	31.281
20.8	18.422	23.8	22.110	26.8	26.426	29.8	31.461
20.9	18.536	23.9	22.243	26.9	26.582	29.9	31.642
21.0	18.650	24.0	22.377	27.0	26.739	30.0	31.824
21.1	18.765	24.1	22.512	27.1	27.897	30.1	32.007
21.2	18.880	24.2	22.648	27.2	27.055	30.2	32.191
21.3	18.996	24.3	22.785	27.3	27.214	30.3	32.376
21.4	19.113	24.4	22.922	27.4	27.374	30.4	32.561
21.5	19.231	24.5	23.060	27.5	27.535	30.5	32.747
21.6	19.349	24.6	23.198	27.6	27.696	30.6	32.934
21.7	19.468	24.7	23.337	27.7	27.858	30.7	33.122
21.8	19.587	24.8	23.476	27.8	28.021	30.8	33.312
21.9	19.707	24.9	23.616	27.9	28.185	30.9	33.503
22.0	19.827	25.0	23.756	28.0	28.349	31.0	33.695

TEAM NAME: TEAM NUMBER:	
-------------------------	--

PART I: ELECTROCHEMISTRY

In the first portion of the examination, you will be asked to use the principles of electrochemistry to either perform a laboratory investigation or answer specific questions. In Part A, you will determine an experimental value of the atomic mass of aluminum and in Part B, you will determine an experimental value of Faraday's Constant.

Part A: Atomic Mass of Aluminum

In this section, you need to determine the atomic mass of the element aluminum by following the steps outlined below. You will be reacting the aluminum foil with hydrochloric acid, HCl(aq).

- 1. Take the mass of the sample of aluminum provided.
- 2. Fill the large beaker with tap water, leaving approximately 1 cm of space at the top.
- 3. Fill the syringe with water by pushing it under the water surface. The air in the syringe will be displaced by the water. Push a tip cap onto the open end of the syringe.
- 4. Place the J-tube as shown in the diagram to the right. The curved portion of the J-tube is placed in the bottom of the syringe so that the gas can be bubbled in. Be sure not to allow any water to escape from the syringe while inserting the J-tube.
- 5. Roll the foil into a loose ball and place it in a test tube. Then add 3.0 mL of 4 M hydrochloric acid. Press the stopper assembly firmly into the test tube. Check to make sure that all of the connections are tight to avoid a loss of hydrogen gas.
- 6. Swirl the test tube containing the acid and aluminum metal until the reaction begins to proceed rapidly. It may take a couple of minutes depending on the acid temperature and level of oxide formation on the surface of the aluminum foil.
- 7. When all the aluminum has been reacted, equalize the pressure inside the syringe with the atmosphere. Move the entire apparatus up or down until the water level inside the syringe is equal to the water level in the beaker. Record the volume of the hydrogen gas in the tube once equalized. Please note that the tip of the syringe does not have calibration points, but the gas could still occupy that space; therefore, add 1.2 mL to your recorded volume to correct for this extra possible volume of the gas.
- 8. Record the water temperature and atmospheric pressure.

Part A Data (15 points)

Make a data table below of any data collected during the laboratory investigation.

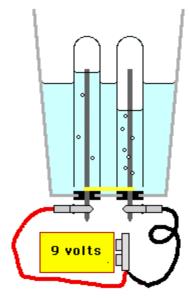
Part A Questions (35 points total)

1. Calculate the partial pressure of the hydrogen gas collected in the syringe. (5 points)

2. Calculate the number of moles of hydrogen gas collected in the syringe. (5 points)

3. Write the net ionic equation of the process investigated in Part A. (5 points)

4. Determine the atomic mass of aluminum using the data collected. (10 points)


TEAM NAME:	TEAM NUMBER:	

- 5. A voltaic cell can be constructed with the substances used in this investigation. In the space below, sketch a voltaic cell using these substances (with anything else that is needed) and clearly label the following components of your sketch. (10 points)
 - anode
 - cathode
 - direction of electron flow
 - expected voltage
 - half-reaction in anode compartment
 - half-reaction in cathode compartment

TEAM NAME:	TEAM NUMBER:

Part B: Electrolysis of Water and Faraday's Constant

A student prepared an electrolytic cell with distilled water, two inverted test tubes, two graphite electrodes, and a 9V battery (which supplies an average current of 0.5A). When he connected all of the components, no visible reaction occurred. His teacher advised him to add a little sulfuric acid to the distilled water. Once the sulfuric acid was added, the student began to observe gas evolution around each of the electrodes. After about 3 minutes, the student made a sketch of the experimental setup, as shown below. After 5 minutes, the student disconnected the battery and measured the volume of the gas in the righthand test tube in the setup to be 18.6 mL at 1 atm and 22°C (i.e. the test tube with the larger volume of gas). From this information, he is asked to determine an experimental value of Faraday's Constant.

Part B Data (15 points)

On the diagram above, clearly label the positive and negative electrode. Also clearly label the identity of the gases contained within the test tubes and the direction of electron flow.

Part B Questions (35 points total)

6. Explain why the initial electrolytic cell did not operate properly and explain why the teacher's suggestion solved this problem. (5 points)

7. Calculate the amount of charge supplied to the electrolytic cell. (5 points)

8. Calculate the number of moles of gas collected after 5 minutes. (5 points)

9. Determine an experimental value of Faraday's Constant based on the data collected in this experiment. (10 points)

10. Would the same products be observed if brine was used instead of the substances in the student's setup? (N.B. Brine is a solution of sodium chloride.) Explain any similarities and/or differences which would be observed. (10 points*)

TEAM NAME: TEAM NUMBER:	
-------------------------	--

PART II: THERMODYNAMICS

In the second portion of the examination, you will be asked to use the principles of thermodynamics to either perform a laboratory investigation or answer specific questions. In Part A, you will determine an experimental value of the heat of vaporization of rubbing alcohol and in Part B, you will determine the result of mixing ethanol and water.

Part A: Heat of Vaporization of Rubbing Alcohol

In this portion, you are asked to determine the heat of vaporization of rubbing alcohol (isopropyl alcohol) using the Clausius-Clapeyron relationship between the vapor pressure of the substance and its temperature. The equation for the Clausius-Clapeyron relationship is shown below.

$$\ln \mathbf{P} = \left(\frac{\Delta H_{vap}}{R}\right) \frac{1}{T} + C$$

A student followed the following experimental conditions when collecting the pressure of the isopropyl alcohol.

- 1. Detach syringe from rubber stopper by twisting the connector. Open the valve of the syringe and add 3 mL of isopropyl alcohol. Close the valve.
- 2. Attach syringe to the rubber stopper assembly. Make sure the stopper is tight.
- 3. Measure the initial pressure at room temperature. Make sure that the pressure readings are in kPa.
- 4. Open valve connected to the syringe. Quickly depress the syringe plunger all the way and then retract it to the 3 mL mark.
- 5. Close the value connected to the syringe (back to the original position).
- 6. Gently submerge the container into the warm water bath. Make sure the wires and tubes are not touching the hot plate. Allow the sample to heat, recording temperature and pressure values every 2 minutes as the water bath heats. Stop collecting data after 10 minutes.
- 7. When finished taking data, remove the flask from the water bath and remove the rubber stopper. Empty the small amount of liquid into the designated waste container.

The student obtained the following data:

Atmospheric Pressure at 22°C	100.0 kPa
Pressure of Flask at 27.35°C	108.4 kPa
Pressure of Flask at 33.05°C	113.2 kPa
Pressure of Flask at 38.45°C	118.3 kPa
Pressure of Flask at 44.35°C	125.1 kPa
Pressure of Flask at 51.35°C	135.1 kPa

TEAM NAME:	TEAM NUMBER:
1 L/ (IVI IV/ (IVIL.	

Part A Questions (45 points total)

1. The pressure measured after the liquid has been added is a mixture of the original gases in the container and the gases that have vaporized. As the temperature increases, the pressure of the original gases will increase due to the increase in temperature. In the table below, adjust the original atmospheric pressure at the elevated temperatures by using the combined gas law. Show your work in each cell. (5 points)

t	2 minutes	4 minutes	6 minutes	8 minutes	10 minutes
re					
ns					
Pressur					
l ed					
Adjusted					
\dj					
₹					

2. Determine the vapor pressure of the isopropyl alcohol at each time point. Show your work in each cell. (5 points)

3.

t	2 minutes	4 minutes	6 minutes	8 minutes	10 minutes
Vapor Pressure					

4. Determine the natural logarithm of the vapor pressure and the inverse temperature, in Kelvin, for each data point. (5 points)

Time	2 minutes	4 minutes	6 minutes	8 minutes	10 minutes
ln P					
1/T					

5. Using the data collected, determine the heat of vaporization of isopropyl alcohol, in kJ/mol. (10 points*)

6. Predict the normal boiling point of isopropyl alcohol, in Celsius, using the data collected in the experiment. Support your answer with a calculation. (10 points*)

TEAM NAME:	TEAM NUMBER:

- 7. Hand sanitizer is applied as a microbial agent to kill many biological pathogens present in our environment. When applied to the skin, it has a cooling effect. The major ingredient in hand sanitizers is ethyl alcohol.
 - a. Describe the process which occurs when the hand sanitizer is applied and why is has a cooling effect. (5 points)

b. Would ethanol or isopropyl alcohol have a larger heat of vaporization? Provide a justification for your response. (5 points)

TEAM NAME:	 TEAM NUMBER:

Part B: Ethanol-Water Mixtures

Each team will perform a set of calorimetric experiments that will measure the temperature change that occurs when two solvents are mixed in an insulated calorimeter. You will run the experiment with five different water/ethanol (EtOH) mole ratios. The density of water is 1.00 g/mL and the density of EtOH is 0.789 g/mL.

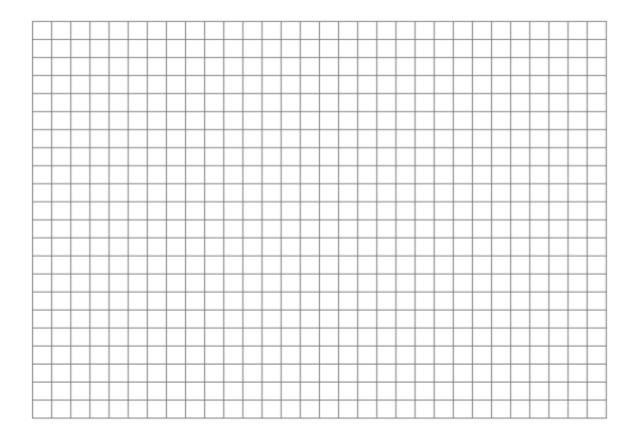
- 1. Whichever solvent is largest in volume in the particular trial you are performing will be measured using a graduated cylinder and poured into the cup. The top of the calorimeter will have a hole where you can stick a temperature probe. Once the initial temperature stabilizes, record the initial temperature of the solvent.
- 2. Measure the other solvent to be added using a different graduated cylinder. Press the Play button (▶) on the LabQuest to start data collection. With the thermometer in place, carefully crack the top open enough to quickly (but carefully) pour the solvent into the calorimeter.
- 3. Gently stir the mixture. The temperature of the solvent will change fairly rapidly upon mixing and should level out at a new temperature after a minute or so. Record the final temperature from the LabQuest interface.
- 4. Repeat the above procedure with the other four EtOH/water mixtures.

The following mixtures will be analyzed.

- 1. 3.0 mL H₂O and 22.0 mL EtOH
- 2. 7.0 mL H₂O and 22.0 mL EtOH
- 3. 12.0 mL H₂O and 17.0 mL EtOH
- 4. 15.0 mL H₂O and 12.0 mL EtOH
- 5. 20.0 mL H₂O and 7.0 mL EtOH

Part B Data (25 points)

Mixture	Initial Temperature	Final Temperature
3.0 mL H ₂ O and		
22.0 mL EtOH		
7.0 mL H ₂ O and		
22.0 mL EtOH		
12.0 mL H ₂ O and		
17.0 mL EtOH		
15.0 mL H ₂ O and		
12.0 mL EtOH		
20.0 mL H ₂ O and		
7.0 mL EtOH		


TEAM NAME:	TEAM NUMBER:

Calculate the mole fractions (χ) of water and ethanol in each of the mixtures. (10 points).

Mixture	χwater	ХеtOH
3.0 mL H ₂ O and 22.0 mL EtOH		
7.0 mL H ₂ O and 22.0 mL EtOH		
12.0 mL H ₂ O and 17.0 mL EtOH		
15.0 mL H ₂ O and 12.0 mL EtOH		
20.0 mL H ₂ O and 7.0 mL EtOH		

Part B Questions (30 points total)

7. Graph the change in temperature as a function of the mole fraction of ethanol. At which mole fraction was the greatest amount of energy exchanged? (8 points)

χ _{EtOH} of Largest Energy Exchange:

8. Explain why the energy exchange was observed. Be as specific as possible. Relate your answer to the χ_{EtOH} of largest energy exchange from above. (8 points*)

9. Does this demonstrate an ideal solution or a deviation from ideality? Explain your answer. (7 points*)

10. If 2-butanol were used instead of ethanol at room temperature, discuss the predicted effect on the change in temperature of the mixture. Justify your answer. (7 points)